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Abstract. Echocardiography is a crucial and widely adopted imaging
modality for diagnosing and monitoring cardiovascular diseases. Deep
learning has been proven effective in analyzing medical images but is
limited in echocardiograms due to the complexity of image acquisition
and interpretation. One crucial initial step to address this is automati-
cally identifying the correct echocardiogram video views. Several studies
have used deep learning and traditional image-processing techniques for
this task. The authors propose an ablation study on a multi-task learn-
ing scheme with a hierarchically structured model output that arranges
views in a tree structure. The proposed model, named ”Multi-task Resid-
ual Neural Network (MTRNN) with masked loss”, uses a conditional
probabilistic training method and demonstrates superior performance
for echocardiogram view classification. While the model has only been
validated for the echocardiogram video classification task, it can be easily
generalized to any medical image classification scenario with a hierarchi-
cal structure among the data labels.
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1 Introduction

Echocardiography is a critical and widely adopted imaging modality for the
screening, diagnosing, differential diagnosing, and follow-up of various cardiovas-
cular diseases [13]. Deep learning has emerged as a powerful tool for analyzing
medical images and has shown its potential to reduce the burden on cardiologists
and radiologists [17]. However, applying deep learning methods for echocardio-
gram analysis is more challenging than other modalities due to the complexity
of image interpretation and identification of the desired imaging view(s) and the
focus in that view [8]. To address this issue, the first step toward comprehensive
computer-assisted echocardiographic image analysis is to automatically identify
the correct views for echocardiogram videos [16]. Recently, there have been mul-
tiple studies targeting this task, both using deep learning-based techniques [3,
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9, 10, 12, 19] and traditional image processing-based techniques [1, 20] and many
others.

On the other hand, from the perspectives of the sonographers, obtaining an
echocardiogram generally involves several standard steps, such as localization,
rotation, and tilting of the probe or transducer. These steps will naturally result
in a hierarchical structure among echocardiogram views. We observe that these
views could be arranged in a tree structure depending on the location (Apical,
Parasternal, Others), the orientation of the probe (e.g., short axis views vs long
axis views, orientation notch towards the right side or the up side of the body)
and the focus in the view (e.g., short axis view at the level of the aortic valve vs
apical long axis view with three chambers). Motivated by the imaging procedure
and observations, we proposed a multi-task learning scheme with hierarchically-
structured model outputs in this study. The proposed scheme simultaneously
predicts the corresponding labels at each tree layer via different branches im-
plemented as model heads. In addition, motivated by the multi-task learning
schemes proposed by [4, 14], which utilizes model training with conditional prob-
ability and a masked loss function, we integrate the conditional probabilistic
training into the branch-based model design. The final model, named ”Multi-
task Residual Neural Network (MTRNN) with masked loss”, fully leverages the
intrinsic tree structure of the relationship among video labels (views) and has
demonstrated superior performance for the echocardiogram view classification
task using an in-house dataset. Formulating the view classification task in a hi-
erarchical multi-task learning framework can: 1) improve model generalizability
by learning the related data labels simultaneously with shared representations
learned across tasks, which can help capture standard features [15]; 2) reduce
overfitting towards a single task by defining the loss function across multiple re-
lated tasks [22]; 3) improve model explainability as not only the leaf-level label
(e.g., whether the given video belongs to A4C view) is predicted, but also along
with the labels of each layer (e.g., whether the video belongs to apical view or
parasternal views).

2 Methodology

2.1 Model Architecture

Hierarchically-structured image classification has been discussed through sev-
eral research works but is still a largely overlooked topic. We can distinguish
two approaches for leveraging the hierarchical structure among labels: revisiting
the loss function or designing the hierarchical classification network. These two
approaches were considered in [23] (also in [7]) and [4] (also in [2]). While [23] re-
lay on a network architecture adapted to the hierarchical classification (BCNN:
branch convolutional neural network for hierarchical classification) with a spe-
cific loss function designed for its network (Weighted Loss), [4] focuses on the
definition of a loss function adapted to a hierarchical classification (Masked loss).
This paper will compare these two loss functions upon several networks similar
to the BCNN.
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Fig. 1. Tree structure of the classification labels of this task. Echocardiography videos
are classified into nine regular views, including Apical 2, 3, 4, 5 chambers (A2c, A3c,
A4c, A5c, respectively), Parasternal long axis (AX), Parasternal long axis with right
ventricle focus(RV), Parasternal short axis at the level of aortic valve (AV), Parasternal
short axis at the level of tricuspid valve (TV), and Others (O), shown as leaf nodes on
the hierarchical tree. Those views are associated at the first level by the orientation of
the probe during image acquisition, including the Upper (U), Right (R), Long axis (L),
Short axis (S), and Others (O). These five classes are then regrouped into three classes
depending on the location of the probe Apical (A), Parasternal (P), and Others (O).
Outlined nodes are A4c and its ancestors. The red contour draws the mask defined
Eq. (2). Illustrations of the images for each view are visualized at the bottom, which
were originally presented in [11].

Fig. 2. Multi-task network architectures tested in this work on a VGG16 backbone.
Black arrows: connections of the backbone network. BCNN (Branch Neural Network)
[23] added two classifier heads (branches 1 and 2) with the green arrow connections,
where the branches 1, 2, and 3 predict the green, purple, and red levels of the tree Fig. 1,
respectively. We also tested the following combinations: black+green+red connections
(R-BCNN: Residual Branch Neural Network); black+grey connections (MTNN: multi-
task neural network); black+grey+red connections (MTRNN: multi-task residual neu-
ral network)
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BCNN: branch convolutional neural network for hierarchical classifi-
cation [23] proposed to use a convolutional neural network as a backbone and
to adjunct two supplementary branches at different depths defining the BCNN
(Fig. 2). Each branch is then used to predict a specific level of the classifica-
tion tree. The loss is finally the weighted sum of the loss of each branch, called
the Weighted Average. Those weights are progressively swayed from the higher
level branch to the lower one. This approach suggests a breadth path of the
classification graph (1).

LWeightedAvg = α · L1 + β · L2 + γ · L3, (1)

where L1, L2, and L3 are the cross-entropy losses of the branches 1, 2, and 3,
respectively, and α, β, and γ are normalized weight that evolves with the epochs.
In our experimentation, we used the backbone as proposed in [23] and preserved
the original coefficients, but we increased the periodicity of their changes to
match our convergence curves.

Masking for evaluating the loss In opposition to [23], which proposed a
network for progressively learning the hierarchical graph level by level for the
root to the leaves, [4] proposes to focus on learning the differentiation between
sibling nodes within the graph. For that, it proposed a masked evaluation of
the cross-entropy loss. This mask filters out (turns to zero) the weights of the
current prediction related to all non-adjacent nodes to the target path within
the graph.

LMasked =
∑
n∈N

CE(yn, ȳn) · p(n), (2)

where N , yn, and ȳn denote the set of graph nodes, the ground truth label of
the node n, and its prediction. p(n) is a binary function that returns 1 if of the
parents of n is a ground truth label, 0 otherwise. For instance, if the target label
is A4C, its ancestors are R, A, and / (outlined Fig. 1), then only the nodes in
the red area of Figure 1 will be considered for calculating the loss.

Proposed model: multi-task residual neural network (MTRNN) These
two methods have demonstrated that they outperformed the regular cross-entropy
loss upon their associated networks. However, how much each strategy is more
efficient than the others is undisclosed. Even though Weighted loss and Masked
loss have orthogonal approaches, they are not exclusive. In this study, we pro-
pose an ablation study that combines those two loss functions and analyses their
impact on the learning of several network architectures. As an initial network, we
used the BCNN, to which we proposed a few modifications and built three addi-
tional variations of this network (Fig. 2). The first additional network, R-BCNN:
residual branch neural network, preserves all the connections of the BCNN but
additionally concatenates the output of the branch of the upper level of the tree
successor branch (black, green, and red connections). In the second additional
architecture, we propose to translate the connections of branches 1 and 2 to the



Multi-task Residual Neural Network 5

end of the features block of the VGG16 [18]. So we obtain a VGG16 with three
classifier heads, named MTNN: multi-task neural network (black and grey con-
nections). Finally, for the third additional network, we reuse the MTNN and add
the red connections (black, grey, and red connections), defining the MTRNN:
multi-task residual neural network. While the red connections aim to enforce the
relationship between the adjacent nodes in the hierarchy, the grey connections
propose a different depth for extracting features related to the higher classes. In
our experimentation, we have tested combining and dissociating the two intro-
duced methods for calculating the loss upon the four presented networks (BCNN,
R-BCNN, MTNN, MTRNN).

2.2 Dataset and pre-processing

In this work, we studied a hierarchical classification task on a Doppler echocar-
diography videos dataset of Massachusetts General Hospital composed of 249
aortic stenosis patients and 8292 videos acquired with Philips devices, with
video labels of nine views (A2C, A3C, A4C, A5C, PLAX, PLAX RV, PSAX AV,
PSAX TV, and OTHERS) annotated by three sonographers. Parasternal long
axis view focused on the left or right ventricle (PLAX LV, PLAX RV), Paraster-
nal short axis view focused on the aortic valve or tricuspid valve (PSAX AV,
PSAX TV). In the pre-processing phase, videos are decomposed into frame im-
ages. Images are masked, cropped, and resized to 224 squared with a black filling,
so the embedded metadata surrounding the record is removed. Only the imaging
sector of the ultrasound probe remains (Fig. 3). The field of view was not part of
the metadata of the DICOM files. It has been estimated by extracting the largest
convex hull over the pixels with high variability across the video frames. Table 1
shows the preparation of our dataset within the 9-class classification. According
to the steps of sonographers in obtaining different views of the echocardiogram,
including localizing, rotating, and tilting the probe, we established the tree struc-
ture of these nine views based on the similarity in their imaging procedure and
visual appearance, as shown in Fig. 1.

Table 1. Composition of the echocardiography dataset used in our classification task.
This table indicates the number of videos per view and splits. The split was made such
that each video is exclusive to a unique split.

Split / View A2C A3C A4C A5C PLAX PLAX RV PSAX AV PSAX TV OTHERS

Training 209 446 702 374 775 201 475 133 2328
Validation 60 128 200 107 221 58 136 38 665
Testing 30 64 100 53 111 29 68 19 332
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Fig. 3. ROI extraction from Doppler echocardiogram data. Left, original data. Right,
the activity map was calculated across all the video frames with the largest convex hull
extracted (red contour).

3 Results

3.1 Model implementation and hyper-parameter settings

The implementation of the neural networks was carried out over Pytorch and
trained on an NVIDIA A100 GPU with 40GB of VRAM. For the training param-
eters, we used a batch size of 124 and a learning rate of 0.001 with a scheduler
that reduces it by 10−1 every 30 epochs. Each network was training over 100
epochs. The source code of all the models tested in this work and the echocardio-
gram video processing pipeline will be shared with the general public via GitHub
(URL anonymized).

Table 2. Average accuracy among the tested combinations by different networks and
the strategies for defining the training loss. Avg, W. Avg, and Masked stand for average
loss, weighted average loss, and masked loss calculation, respectively. The accuracy is
evaluated for each video by voting over all the frames.

Structure/Method Avg Avg + Masked W. Avg + Masked

VGG16 0.90 NA NA
BCNN 0.92 0.98 0.97
R-BCNN 0.91 0.98 0.97
MTNN 0.92 0.98 0.98
MTRNN 0.92 0.98 0.97

3.2 Running example of the classification result

Figure 4 shows side by side the difference between the hierarchical multi-task
architectures investigated in this work (BCNN, RBCNN, MTNN, and MTRNN)
and the regular VGG-16, for the same input video. The additional labels pre-
dicted (”A” and ”R”) and the corresponding loss functions would be useful for
improving model explainability and generalizability.
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Fig. 4. The architectures observed in this study (left) take as an input an image and
predict triple labels associated with a three-level hierarchical graph, where a regular
VGG-16 (right) outputs only one prediction.

Table 3. Accuracy per class. The accuracy is evaluated for each video by voting over
all the frames.

Average

Structure OTHERS A2C A3C A4C A5C PLAX PLAX RV PSAX AV PSAX TV

VGG-16 0.86 0.87 0.92 0.93 0.91 0.96 0.90 0.94 0.95
BCNN 0.89 0.87 0.95 0.95 0.96 0.97 0.90 0.94 0.89
R-BCNN 0.88 0.90 0.94 0.95 0.92 0.98 0.83 0.91 0.79
MTNN 0.89 0.90 0.94 0.95 0.92 0.98 0.90 0.94 0.84
MTRNN 0.89 0.90 0.95 0.95 0.94 0.97 0.97 0.93 0.89

Average + Masked

Structure OTHERS A2C A3C A4C A5C PLAX PLAX RV PSAX AV PSAX TV

BCNN 0.87 0.90 0.98 0.96 0.96 0.99 0.93 0.93 0.84
R-BCNN 0.88 0.97 0.89 0.92 0.94 0.95 0.86 0.90 0.68
MTNN 0.87 0.83 0.95 0.95 0.94 0.98 0.97 0.94 0.84
MTRNN 0.85 0.97 0.95 0.96 0.94 0.97 0.93 0.94 0.79

Weighted Average + Masked

Structure OTHERS A2C A3C A4C A5C PLAX PLAX RV PSAX AV PSAX TV

BCNN 0.97 0.93 1.00 0.94 0.94 1.00 1.00 0.99 1.00
R-BCNN 0.97 0.93 1.00 0.95 0.96 1.00 1.00 0.99 1.00
MTNN 0.96 0.93 1.00 0.96 0.98 1.00 1.00 1.00 1.00
MTRNN 0.97 0.90 1.00 0.95 0.96 1.00 1.00 0.99 1.00

3.3 Performance comparison

In the experimentation, the four architectures presented above (i.e., BCNN, R-
BCNN, MTNN, and MTRNN) have been tested over the same backbone, a
VGG-16. Each network has been trained with and without both strategies in-
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troduced in Section 2.1, Weighted Average and Masked. We established three
different parametrisations for the training of each network. Table 2 shows the
overall accuracy obtained for each combination of the experimental workbench
and a regular VGG-16 as a baseline. All enhanced architectures outperformed
the baseline VGG16 in any configuration based on overall accuracy. In addition,
the Weighted Average method not only increases the training time significantly
due to its periodic weights but also deteriorates the performances of each net-
work, even on its original network. Using a regular cross-entropy loss (weighted
or not), the BCNN comes on top. However, when the masking method is used,
the MTNN gets an edge over the other networks. It was noticed that the mask-
ing method introduced a higher confusion between the A2c and OTHERS views
upon all the networks compared in this article. Lowering into the details, Table
3 shows the accuracy of the tested configuration over each targeted class. At this
scale, the negative impact of the Weighted Average is nuanced since it increases
the accuracy on OTHER, A3c, PLAX, PLAX AR, and PSAX TV.

4 Conclusion and Discussion

This work proposed a framework for more effective learning on data with hier-
archically organised labels: multi-task residual neural network (MTRNN) with
masked loss. MTRNN integrated two schemes for multi-tasking learning and
can perform better for an echocardiogram view classification task. While the
proposed model is only validated for a specific task in this work, We envision
that it can be easily adapted to other medical image analysis scenarios where
the data labels are hierarchically organised, such as thoracic disease diagnosis by
chest x-ray images. Furthermore, most object detection tasks in medical imaging
can be formulated as a hierarchical multi-task learning problem, as a series of
multi-scale regions inherently define the target. Examples of such tasks include
but are not limited to skin lesion classification tasks from dermoscopic images
[5] and gastrointestinal disease detection using colonoscopy imaging [6]. Further-
more, the proposed scheme can be integrated with the Knowledge Graph in the
medical domain, providing knowledge-based guidance from integrated heteroge-
neous data resources [21]. Thus, we can achieve a more formalised modelling of
interrelationships between imaging and its labels.
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